• Murman DL. The Impact of Age on Cognition. Semin Hear. 2015;36(3):111–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. Census Bureau. ACS Demographic and Housing Estimates. 2021. Available from: https://data.census.gov/table?q=DP05.

  • Vincent GK, Velkoff VA. The Next Four Decades, The Older Population in the United States: 2010 to 2050. Washington: Census Bureau; 2010.


    Google Scholar
     

  • Centers for Disease Control and Prevention. Subjective Cognitive Decline — A Public Health Issue. 2019. Available from: https://www.cdc.gov/aging/data/subjective-cognitive-decline-brief.html.

  • Manly JJ, Jones RN, Langa KM, Ryan LH, Levine DA, McCammon R, et al. Estimating the Prevalence of Dementia and Mild Cognitive Impairment in the US: The 2016 Health and Retirement Study Harmonized Cognitive Assessment Protocol Project. JAMA Neurol. 2022;79(12):1242–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates JA, Clare L, Woods RT. Mild cognitive impairment and mood: a systematic review. Rev Clin Gerontol. 2013;23:317–56.


    Google Scholar
     

  • Fiske A, Wetherell JL, Gatz M. Depression in older adults. Annu Rev Clin Psychol. 2009;5:363–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker KL. Nutrient intake, nutritional status, and cognitive function with aging. Ann N Y Acad Sci. 2016;1367(1):38–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Ortega RM, Requejo AM, Andres P, Lopez-Sobaler AM, Quintas ME, Redondo MR, et al. Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr. 1997;66(4):803–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Requejo AM, Ortega RM, Robles F, Navia B, Faci M, Aparicio A. Influence of nutrition on cognitive function in a group of elderly, independently living people. Eur J Clin Nutr. 2003;57(Suppl 1):S54–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Vercambre MN, Boutron-Ruault MC, Ritchie K, Clavel-Chapelon F, Berr C. Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women. Br J Nutr. 2009;102(3):419–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dror DK, Allen LH. Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev. 2008;66(5):250–5.

    PubMed 

    Google Scholar
     

  • Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients. 2018;10(6):730.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson CR, Mello CV. Significance of vitamin A to brain function, behavior and learning. Mol Nutr Food Res. 2010;54(4):489–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy–A Review. Nutrients. 2016;8(2):68.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders LM, Zeisel SH. Choline: Dietary Requirements and Role in Brain Development. Nutr Today. 2007;42(4):181–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakazaki E, Mah E, Sanoshy K, Citrolo D, Watanabe F. Citicoline and Memory Function in Healthy Older Adults: A Randomized, Double-Blind Placebo-Controlled Clinical. Trial J Nutr. 2021;151(8):2153–60.

    PubMed 

    Google Scholar
     

  • Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. Washington, D.C.: U.S. Department of Agriculture, Agricultural Research Service; 2020. Available from: https://www.dietaryguidelines.gov/2020-advisory-committee-report.

  • Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. 2022. Available from: https://www.cdc.gov/nchs/nhanes/index.htm.

  • Ahluwalia N, Dwyer J, Terry A, Moshfegh A, Johnson C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv Nutr. 2016;7(1):121–34.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington DC: National Academies Press; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222886/.

  • Brody DJ, Kramarow EA, Taylor CA, McGuire LC. Cognitive Performance in Adults Aged 60 and Over: National Health and Nutrition Examination Survey, 2011–2014. Natl Health Stat Report. 2019;126:1–23.


    Google Scholar
     

  • Kroenke K, Spitzer RL. The PHQ-9: a new depression and diagnostic severity measure. Pysch Annals. 2002;32:509–21.


    Google Scholar
     

  • Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Questionnaire. JAMA. 1999;282(18):1737–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Tooze JA, Kipnis V, Buckman DW, Carroll RJ, Freedman LS, Guenther PM, et al. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med. 2010;29(27):2857–68.

    PubMed 

    Google Scholar
     

  • National Cancer Institute. Usual Dietary Intakes: SAS Macros for the NCI Method. 2021. Available from: https://epi.grants.cancer.gov/diet/usualintakes/macros.html.

  • Bailey RL, Dodd KW, Gahche JJ, Dwyer JT, Cowan AE, Jun S, et al. Best Practices for Dietary Supplement Assessment and Estimation of Total Usual Nutrient Intakes in Population-Level Research and Monitoring. J Nutr. 2019;149(2):181–97.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrick KA, Rossen LM, Parsons R, Dodd KW. Estimating Usual Dietary In take From National Health and Nut rition Examination Survey Data Using the National Cancer Institute Method. Vital Health Stat 2. 2018;178:1–63.


    Google Scholar
     

  • Woloszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annu Rev Nutr. 2020;40:247–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Fukui K, Nakamura K, Shirai M, Hirano A, Takatsu H, Urano S. Long-Term Vitamin E-Deficient Mice Exhibit Cognitive Dysfunction via Elevation of Brain Oxidation. J Nutr Sci Vitaminol (Tokyo). 2015;61(5):362–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59(7):1125–32.

    PubMed 

    Google Scholar
     

  • Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A 3rd. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. 2005;82(3):627–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Hughes CF, Ward M, Tracey F, Hoey L, Molloy AM, Pentieva K, et al. B-Vitamin Intake and Biomarker Status in Relation to Cognitive Decline in Healthy Older Adults in a 4-Year Follow-Up Study. Nutrients. 2017;9(1):53.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malouf R, Grimley Evans J. The effect of vitamin B6 on cognition. Cochrane Database Syst Rev. 2003;4:CD004393.


    Google Scholar
     

  • Balk EM, Raman G, Tatsioni A, Chung M, Lau J, Rosenberg IH. Vitamin B6, B12, and folic acid supplementation and cognitive function: a systematic review of randomized trials. Arch Intern Med. 2007;167(1):21–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramos MI, Allen LH, Mungas DM, Jagust WJ, Haan MN, Green R, et al. Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2005;82(6):1346–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng L, Ng TP, Chuah L, Niti M, Kua EH. Homocysteine, folate, and vitamin B-12 and cognitive performance in older Chinese adults: findings from the Singapore Longitudinal Ageing Study. Am J Clin Nutr. 2006;84(6):1506–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Agnew-Blais JC, Wassertheil-Smoller S, Kang JH, Hogan PE, Coker LH, Snetselaar LG, et al. Folate, vitamin B-6, and vitamin B-12 intake and mild cognitive impairment and probable dementia in the Women’s Health Initiative Memory Study. J Acad Nutr Diet. 2015;115(2):231–41.

    PubMed 

    Google Scholar
     

  • Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med. 2010;123(6):522-7 e2.

    CAS 
    PubMed 

    Google Scholar
     

  • Poly C, Massaro JM, Seshadri S, Wolf PA, Cho E, Krall E, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr. 2011;94(6):1584–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naber M, Hommel B, Colzato LS. Improved human visuomotor performance and pupil constriction after choline supplementation in a placebo-controlled double-blind study. Sci Rep. 2015;5:13188.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peeri NC, Egan KM, Chai W, Tao MH. Association of magnesium intake and vitamin D status with cognitive function in older adults: an analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Eur J Nutr. 2021;60(1):465–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Vintimilla RM, Large SE, Gamboa A, Rohlfing GD, O’Jile JR, Hall JR, et al. The Link between Potassium and Mild Cognitive Impairment in Mexican-Americans. Dement Geriatr Cogn Dis Extra. 2018;8(1):151–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowak KL, Fried L, Jovanovich A, Ix J, Yaffe K, You Z, et al. Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices. Am J Nephrol. 2018;47(1):57–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Warthon-Medina M, Moran VH, Stammers AL, Dillon S, Qualter P, Nissensohn M, et al. Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis. Eur J Clin Nutr. 2015;69(6):649–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Ferland G. Vitamin K and the nervous system: an overview of its actions. Adv Nutr. 2012;3(2):204–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alisi L, Cao R, De Angelis C, Cafolla A, Caramia F, Cartocci G, et al. The Relationships Between Vitamin K and Cognition: A Review of Current Evidence. Front Neurol. 2019;10:239.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev. 2014;72(9):605–12.

    PubMed 

    Google Scholar
     

  • Bovier ER, Hammond BR. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch Biochem Biophys. 2015;572:54–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Power R, Coen RF, Beatty S, Mulcahy R, Moran R, Stack J, et al. Supplemental Retinal Carotenoids Enhance Memory in Healthy Individuals with Low Levels of Macular Pigment in A Randomized, Double-Blind. Placebo-Controlled Clinical Trial J Alzheimers Dis. 2018;61(3):947–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Stringham NT, Holmes PV, Stringham JM. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines, and cognitive performance. Physiol Behav. 2019;211:112650.

    CAS 
    PubMed 

    Google Scholar
     

  • Christensen K, Gleason CE, Mares JA. Dietary carotenoids and cognitive function among US adults, NHANES 2011–2014. Nutr Neurosci. 2020;23(7):554–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Rutjes AW, Denton DA, Di Nisio M, Chong LY, Abraham RP, Al-Assaf AS, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018;12:CD011906.

    PubMed 

    Google Scholar
     

  • Grodstein F, O’Brien J, Kang JH, Dushkes R, Cook NR, Okereke O, et al. Long-term multivitamin supplementation and cognitive function in men: a randomized trial. Ann Intern Med. 2013;159(12):806–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker LD, Manson JE, Rapp SR, Sesso HD, Gaussoin SA, Shumaker SA, et al. Effects of cocoa extract and a multivitamin on cognitive function: A randomized clinical trial. Alzheimers Dement. 2022;19(4):1308–19.

    PubMed 

    Google Scholar
     

  • Murphy RA, Devarshi PP, Ekimura S, Marshall K, Hazels MS. Long-chain omega-3 fatty acid serum concentrations across life stages in the USA: an analysis of NHANES 2011–2012. BMJ Open. 2021;11(5):e043301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: a systematic review. BMC Psychiatry. 2020;20(1):315.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacka FN, Overland S, Stewart R, Tell GS, Bjelland I, Mykletun A. Association between magnesium intake and depression and anxiety in community-dwelling adults: the Hordaland Health Study. Aust N Z J Psychiatry. 2009;43(1):45–52.

    PubMed 

    Google Scholar
     

  • Tarleton EK, Littenberg B. Magnesium intake and depression in adults. J Am Board Fam Med. 2015;28(2):249–56.

    PubMed 

    Google Scholar
     

  • Huang JH, Lu YF, Cheng FC, Lee JN, Tsai LC. Correlation of magnesium intake with metabolic parameters, depression and physical activity in elderly type 2 diabetes patients: a cross-sectional study. Nutr J. 2012;11:41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yary T, Lehto SM, Tolmunen T, Tuomainen TP, Kauhanen J, Voutilainen S, et al. Dietary magnesium intake and the incidence of depression: A 20-year follow-up study. J Affect Disord. 2016;193:94–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Bolzetta F, Veronese N, Stubbs B, Noale M, Vaona A, Demurtas J, et al. The Relationship between Dietary Vitamin K and Depressive Symptoms in Late Adulthood: A Cross-Sectional Analysis from a Large Cohort Study. Nutrients. 2019;11(4):787.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swann OG, Kilpatrick M, Breslin M, Oddy WH. Dietary fiber and its associations with depression and inflammation. Nutr Rev. 2020;78(5):394–411.

    PubMed 

    Google Scholar